

University of Wisconsin-Madison | UW Extension

WWW.COOLBEAN.INFO

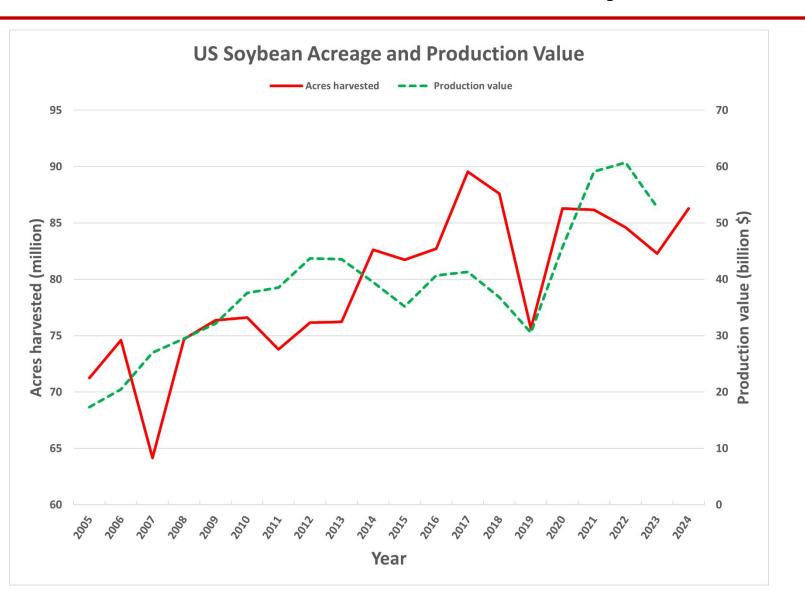

Efficacy of Neonicotinoids in Agricultural Pest Control

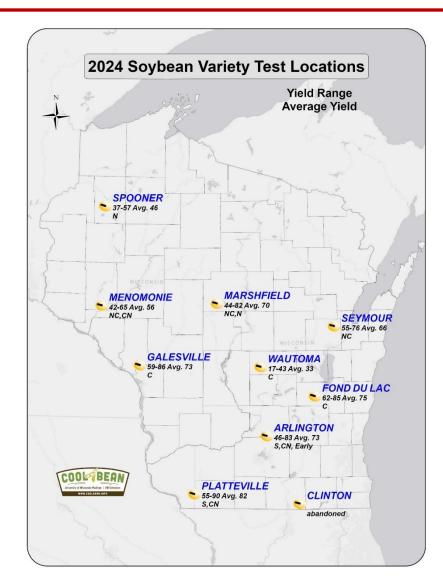
S.P. Conley, Mourtzinis, S., J. Gaska, A. Roth, et al. Professor of Agronomy and State Soybean Specialist College of Agricultural and Life Sciences, UW-Madison

When/Why Neonicotinoid Seed treatments are Used

- When there is a documents history of pest problems
 - Extensive list of pest managed
- High risk (for pest) cropping systems
 - Manure systems
 - Cover crops
 - Transitional
 - Continuous cropping
- Early planting
 - Physiological response
- Risk Mitigation
 - Industry replant protection
 - Farmer risk/yield protection

Corn rootworm


Seedcorn maggot



Wireworm

UW BeanTeam Program in Review Soybean 112,360,000 bu i

112,360,000 bu in WI in 2024; ~\$1.15B

TABLE 10. CONTINUED. 2023 Characteristics of Soybean Varieties (3 of 9)

• What am I planting?

		Maturity	Herbicide	Performance					Color ⁴		
Brand	Entry	Group	Trait ¹	Shown in Table(s)	Seed Treatment(s)	SCN Source ²	PRR Genes ³	Flower	Pubescence	Pod	Hilum
DONMARIO	DM 24E23	2.4	E3	2	Burrus PowerShield	PI 88788	Rps 1-k	Р	LTW	BR	BL
DONMARIO	DM 27E34	2.7	E3	2	Burrus PowerShield	PI 88788	Rps 1-c	Ρ	LTW	BR	BL
DONMARIO	DM 28E52	2.8	E3	2	Burrus PowerShield	PI 88788	Rps 1-k	Р	G	BR	IB
Dyna-Gro	S16EN42	1.6	E3	3	Equity VIP, Saltro, Vayantis	PI 88788	Rps 3-a	Ρ	G	Т	BF
Dyna-Gro	S20EN84	2.0	E3	2,3	Equity VIP, Saltro, Vayantis	Peking	Rps 1-k	P	LTW	Т	BR
Dyna-Gro	S20EN92	2.0	E3	3	Equity VIP, Saltro, Vayantis	PI 88788	Rps 1-c	Ρ	G	BR	IB
Dyna-Gro	S21EN81	2.1	E3	2,3	Equity VIP, Saltro, Vayantis	PI 88788	Rps 1-k	Ρ	G	BR	IB
Dyna-Gro	S25EN74	2.5	E3	2	Equity VIP, Saltro, Vayantis	Peking	Rps 1-k	Р	LTW	Т	BL
Dyna-Gro	S25XF64	2.5	XF	2	Equity VIP, Saltro, Vayantis	PI 88788	Rps 1-c	Ρ	G	BR	IB
Dyna-Gro	S26EN53	2.6	E3	2	Equity VIP, Saltro, Vayantis	PI 88788	Rps 1-c	Р	G	Т	BF
FS Hisoy	HS 12F30	1.2	XF	2,3	Acceleron F/I, Saltro	PI 88788	Rps 1-c	Р	G	Т	BF
FS HiSOY	HS 18E30	1.8	E3	2,3	Acceleron F/I, Saltro	Peking	Rps 1-k	Р	G	Т	BF
FS Hisoy	HS 18F20	1.8	XF	2,3	Acceleron F/I, Saltro	PI 88788		Р	G	Т	BF
FS HiSOY	HS 21E20	2.1	E3	2,3	Acceleron F/I, Saltro	PI 88788	Rps 1-c	Ρ	LTW	Т	BL
FS HiSOY	HS 23E10	2.3	E3	2,3	Acceleron F/I, Saltro	PI 88788	Rps 1-k	W	G	Т	BF
FS Hisoy	HS 24E30	2.4	E3	2,3	Acceleron F/I, Saltro	PI 88788	Rps 1-c	Ρ	LTW	BR	BL
FS Hisoy	HS 24F00	2.4	XF	2,3	Acceleron F/I, Saltro	PI 88788	Rps 1-c	Р	G	Т	BF
FS Hisoy	HS 25E30	2.5	E3	2	Acceleron F/I, Saltro	Peking	Rps 1-k	Р	LTW	Т	BL
FS Hisoy	HS 26E20	2.6	E3	2	Acceleron F/I, Saltro	PI 88788	Rps 1-k	Р	G	Т	IB
FS HISOY	HS 28E10	2.8	E3	2	Acceleron F/I, Saltro	PI 88788	Rps 1-k	Р	G	BR	IB
FS Hisoy	HS 28F30	2.8	XF	2	Acceleron F/I, Saltro	PI 88788		Р	LTW	BR	BL
Genesis	G0880E	0.8	E3	5	EclipseUS Trio	Peking	Rps 3-a	Р	G	BR	BF
Genesis	G1260E	1.2	E3	4,5	EclipseUS Trio	PI 88788	Rps 1-c	Р	G	Т	IB
Genesis	G1560E	1.5	E3	4	EclipseUS Trio	PI 88788	Rps 3-a	Р	G	Т	BF
Genesis	G1760E	1.7	E3	4	EclipseUS Trio	PI 88788	Rps 3-a	Р	G	Т	BF

All characteristic information is provided by the originator.

¹ Herbicide Trait : CN = conventional, RR2X = dicamba/glyphosate, XF = dicamba/glufosinate/glyphosate, E3 = glufosinate/glyphosate/2,4-D ² Source of SCN Resistance.

Micheal Geissinger, Jordan Schuler & Mimi Broeske, NPM Program

Damon Smith, Professor of Plant Pathology

This publication is available for download from the Nutrient and Pest Management Program's website: ipcm.wisc.edu What's on your seed?

nematode

clarify the

small grain

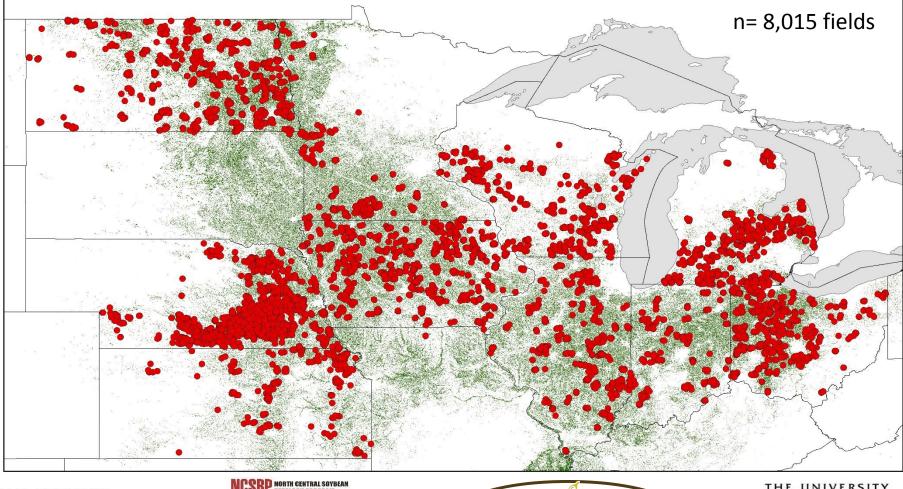
Seed treat

The num

By treatm

Then alp

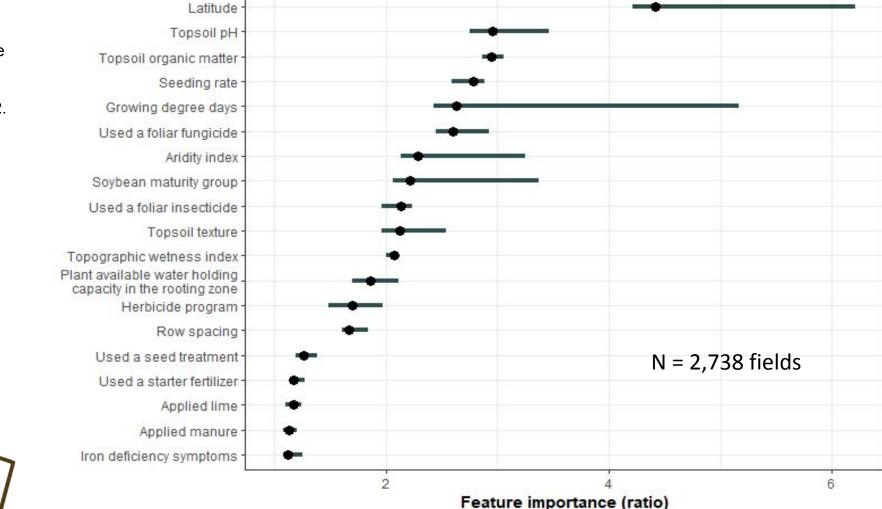
Seed treatments have been used for years, mostly for protection against seedling diseases. However, there are a number of treatments marketed for protection against insects and


1	clothianidin
1	cyantraniliprole
I	imidacloprid

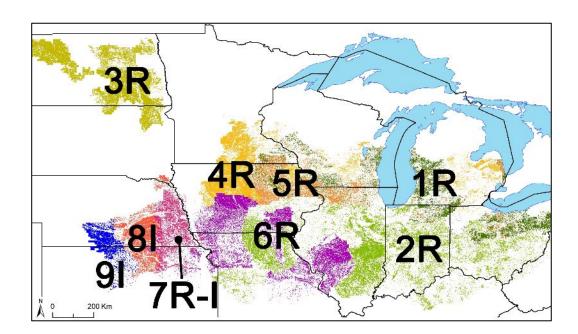
thiamethoxam

Lumisure	Corn, Soybean, Small Grains					
Nipsit INSIDE®	Corn, Soybean, Small Grains Corn, Soybean, Small Grains Soybean, Small Grains					
Poncho [®] 600						
Poncho® XC						
Fortenza	Corn, Soybean					
Acceleron [™] IX-409	Soybean					
AXCESS™	Corn, Soybean, Small Grains Corn, Soybean, Small Grains Corn, Soybean, Small Grains Corn, Soybean, Small Grains Corn, Soybean, Small Grains					
Dyna-Shield® Imidacloprid 5						
Gaucho [®] 600 Flowable						
Nitro Shield IV						
Resonate 480 ST						
Resonate 600 ST	Corn, Soybean, Small Grains					
Revize Imida ST	Corn, Soybean, Small Grains					
Senator [®] 600 FS	Corn, Soybean, Small Grains					
Sharda Imidacloprid 5SC	Corn, Soybean, Small Grains					
StartUp IMIDA	Corn, Soybean, Small Grains					
Cruiser [®] 5FS	Corn, Soybean, Small Grains					

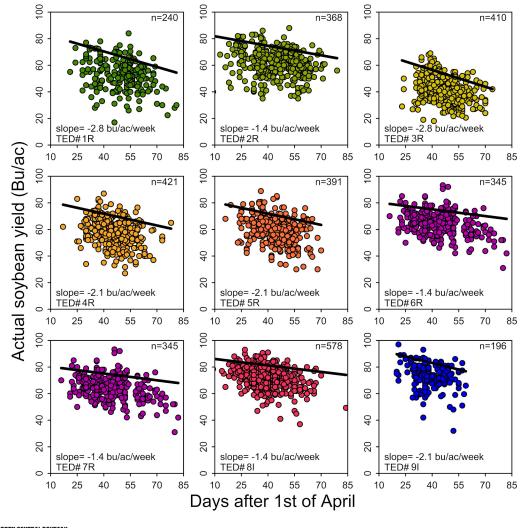
Boots on the Ground On-Farm Validation



Importance of management-based variables in a random forest model predicting soybean yield.

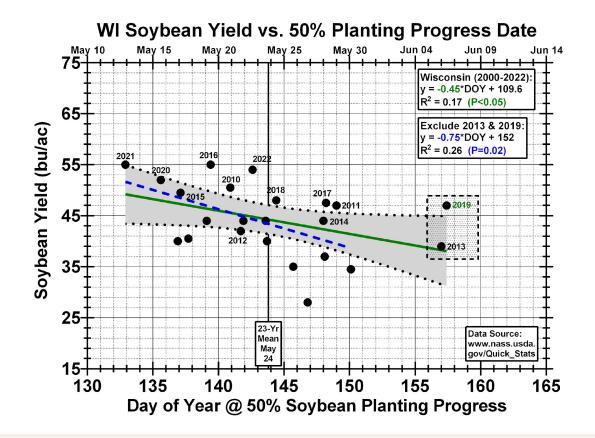

Sowing date :

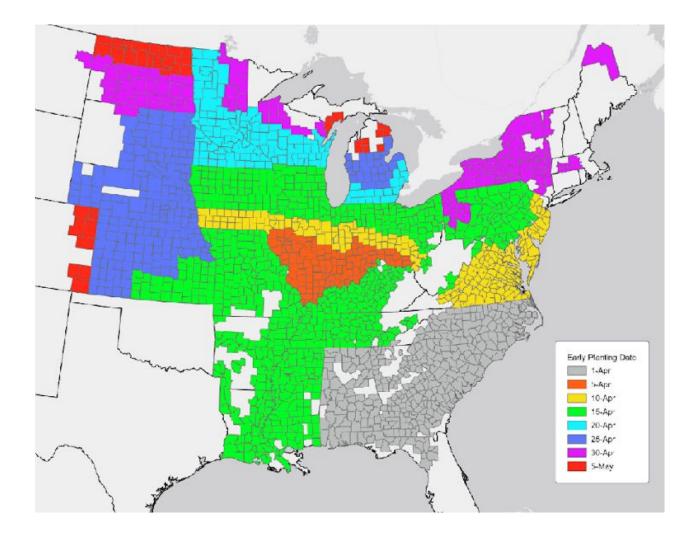
Shah, A.D., T. R. Butts, S. Mourtzinis, J. I. Rattalino Edreira, P. Grassini, S. P. Conley and P. D. Esker. 2021. An interpretable machine learning assessment of foliar fungicide contribution to soybean yield in the north-central United States. Scientific Reports 11:18769. https://doi.org/10.1038/s41598-021-98230-2.

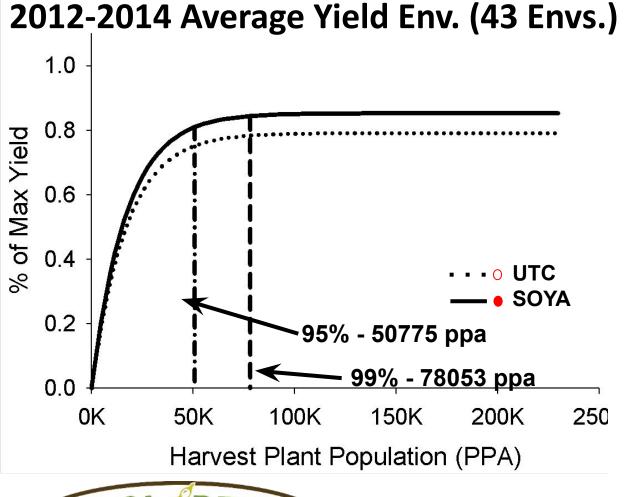


Influence of planting date on soy yield by TED

(Rattalino Edreira et al. 2017a, Agric. For. Meteorol. 247, 170-180)







• Updated RMA replant coverage

Soybean harvest population and yield resilience

LSD(.05) = 2 bu a^{-1}

CIPAR & CumNDVI Planting Date x Thiamethoxam

 Delaying planting decreases CIPAR & CumNDVI

•CruiserMaxx increased CIPAR & CumNDVI within first planting date.

Table 7. Cumulative intercepted photosynthetically active radiation (CIPAR) and cumulative normalized difference vegetative index (CumNDVI) means for the seed treatment and planting date main effects and their interaction pooled across all seeding rates during 2012 and 2013.

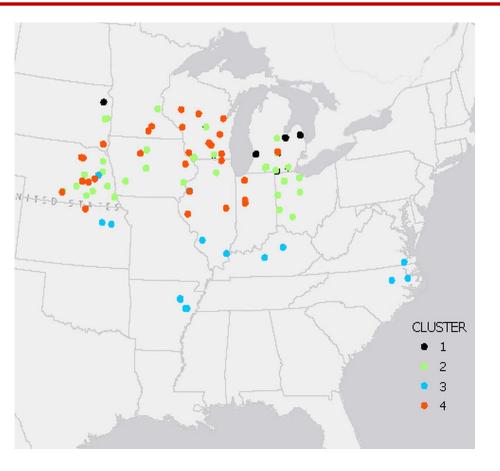
	PI	Planting date				
Variable	Early	Mid	Late	Mean ^{†‡}		
CIPAR, MJ m ⁻²						
Seed treatment						
UTC§	631	599	541	590		
ApronMaxx	631	601	542	591		
CruiserMaxx	645	606	544	598		
LSD (0.05)	11					
Mean [†]	635	602	542			
CumNDVI [®]						
Seed treatment						
UTC	34.0	30.8	28.1	31		
ApronMaxx	33.8	30.9	27.9	30.9		
CruiserMaxx	35.2	31.2	28.6	31.7		
LSD (0.05)	0.8					
Mean [‡]	34.4	31.0	28.2			

⁺ CIPAR main effect means have a LSD (0.05) of 3 for seed treatment and 14 for planting date.

[‡] CumNDVI main effect means have a LSD (0.05) of 0.2 for seed treatment and 0.9 for planting date.

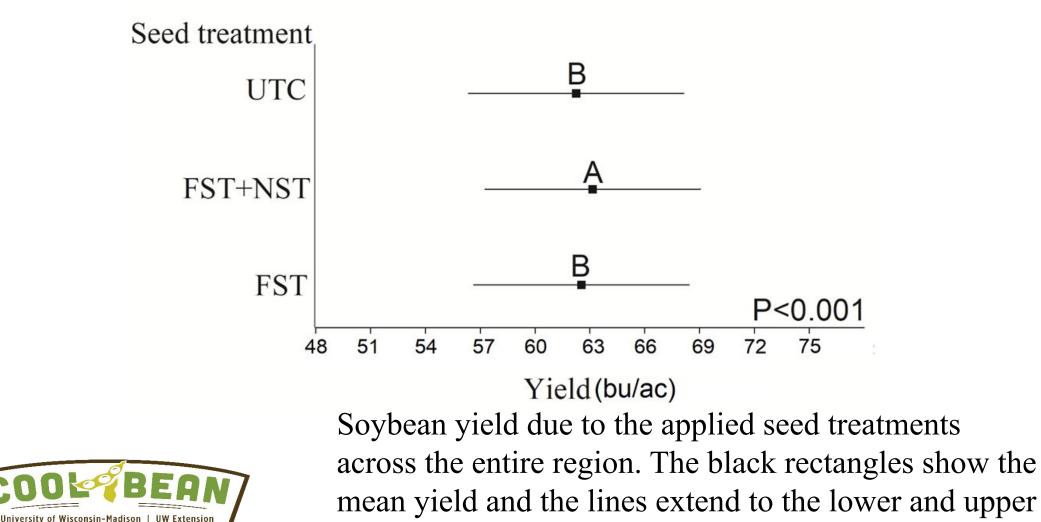
§ UTC, untreated control.

[¶] CumNDVI has no units for measurement because it is a relative number.

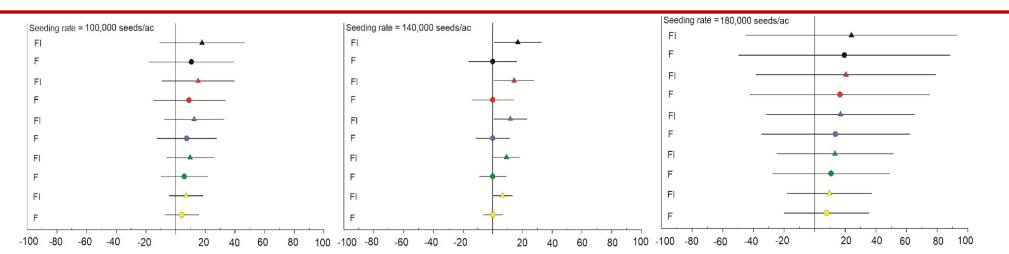

Soybean F&I Seed Treatments

SCIENTIFIC REPORTS

OPEN Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

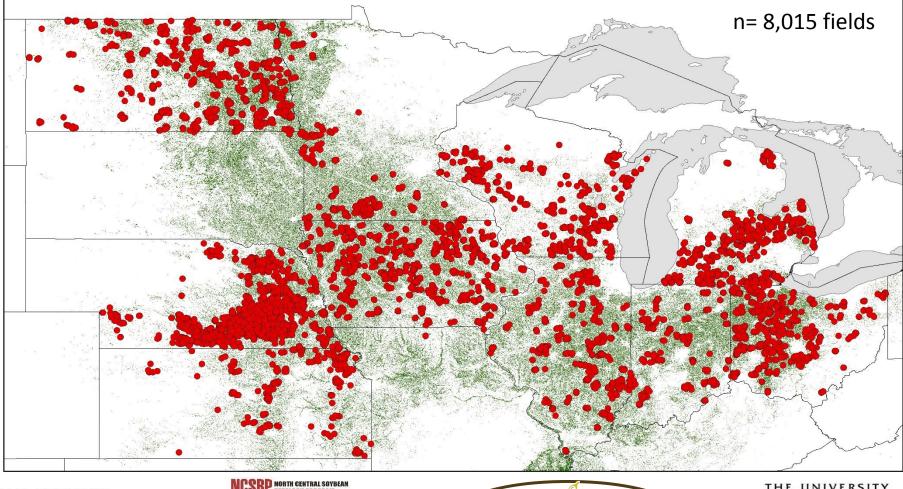

Received: 31 January 2019 Accepted: 17 July 2019 Published online: 09 September 2019 Spyridon Mourtzinis¹, Christian H. Krupke², Paul D. Esker[®], Adam Varenhorst⁴, Nicholas J. Arneson², Cari A. Bradley[®], Adam M. Byrne², Martin I. Chilvers³, Loren J. Giesler⁵, Ames Herber², Yuba R. Kandel[®], Maciej J. Kazula¹⁰, Catherine Hun⁴, Laura E. Lindsey¹¹, Sean Malone⁸, Daren S. Mueller⁴, Seth Naeve²⁰, Emerson Nafziger¹², Dominic D. Reisig¹³, William J. Ross¹⁴, Devon R. Rossman², Sally Taylor⁴ & Shawn Y. Conley¹

- Soybean yield data were aggregated from 194 replicated field experiments established from 2006 to 2017, within 14 states
- The database consisted of 11,146 plot-specific yields


Results

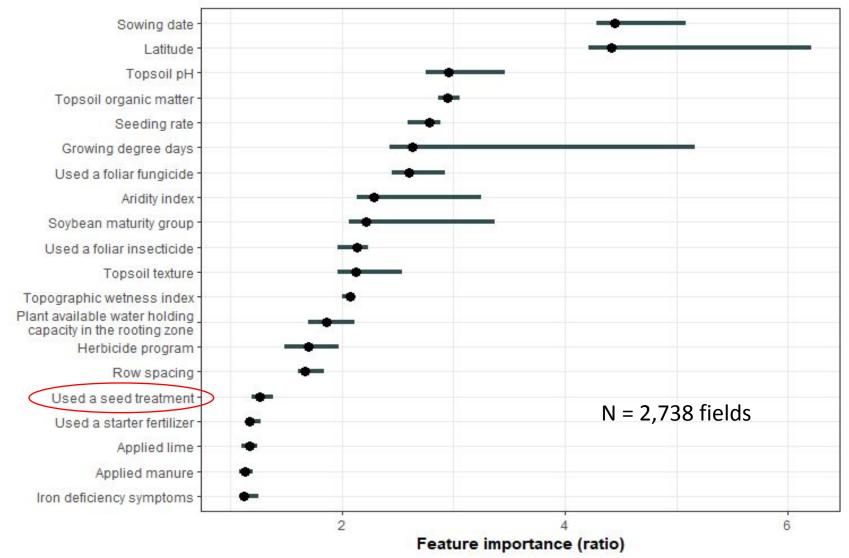
95% confidence limits

WWW.COOLBEAN.INFO

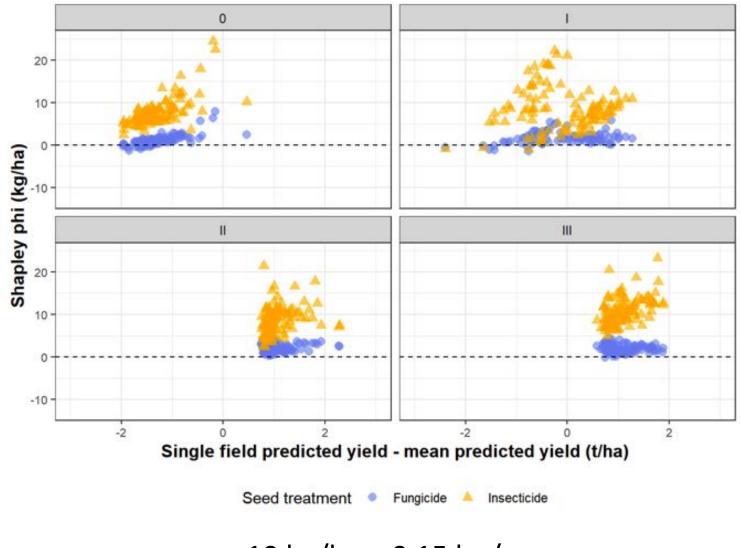

Results cont.

Breakeven cost of fungicide only (F - circles), fungicide + insecticide (FI - triangles) seeds compared to untreated (line at 0 \$/a) for 8 \$/bu (yellow), 11 \$/bu (green), 14 \$/bu (blue), 17 \$/bu (red), and 20 \$/bu (black) soybean price scenarios. The lines extend to the lower and upper 95% confidence limits of each income difference (FST-UTC and FST+NST-UTC)

Boots on the Ground On-Farm Validation



Importance of management-based variables in a random forest model predicting soybean yield.


Shah, A.D., T. R. Butts, S. Mourtzinis, J. I. Rattalino Edreira, P. Grassini, S. P. Conley and P. D. Esker. 2021. An interpretable machine learning assessment of foliar fungicide contribution to soybean yield in the north-central United States. Scientific Reports 11:18769. https://doi.org/10.1038/s41598-021-98230-2.

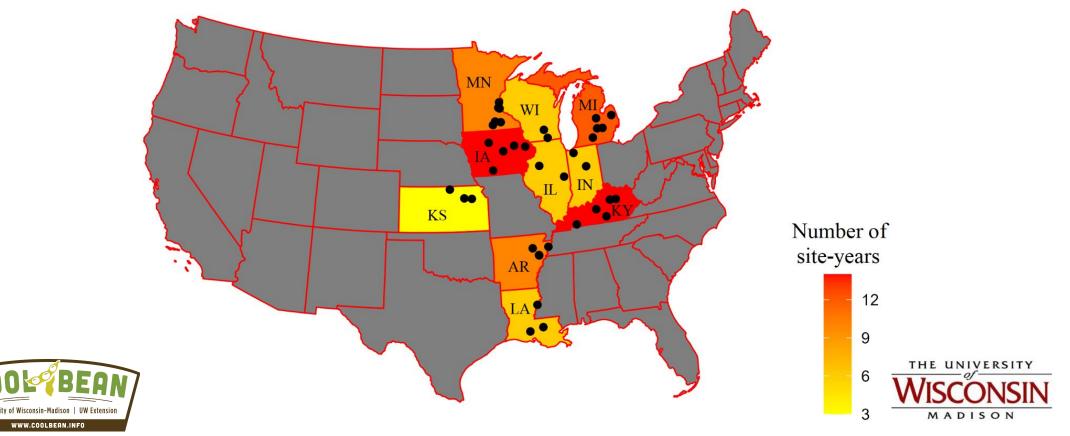
Are fungicide (and other) seed treatments needed?

Stratified by maturity group

10 kg/ha = 0.15 bu/ac 20 kg/ha = 0.30 bu/ac

Shah et al. (*in preparation*)

Does Intensive Soybean Management Reduce Downside Yield Risk Across the US


Shawn Conley

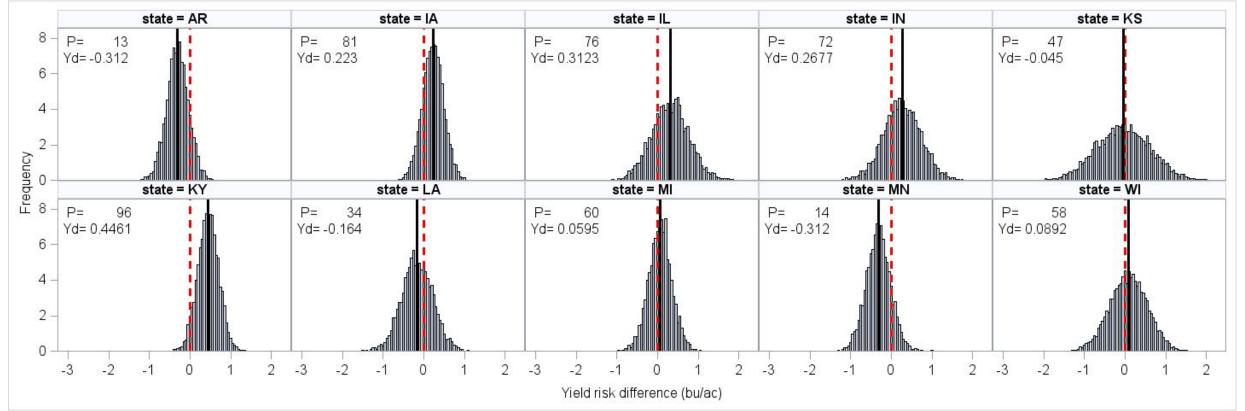
Objective

• Our objective was to measure the effect of high-input management systems on soybean yield and risk by analyzing yield data from field experiments over the period 2009–2014 across the US

Methods

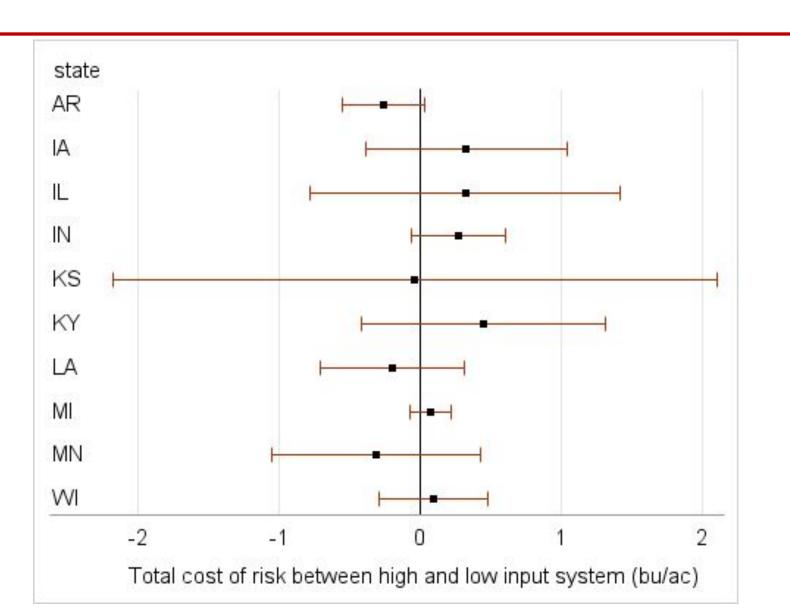
The high-input cropping system included fungicide, insecticide and biological seed treatments, soil and foliar fertilizer and foliar fungicide and insecticide applications. None of these inputs were applied in the low input system.

Years	Input	it Seed treatment			Foliar	Soil	Foliar	Foliar	Ν	Mean yield
applied	system	Fungicide	Insecticide	Biological	fertilizer	fertilizer	fungicide	insecticide		(bu/ac)
2009-2011	high	yes	yes	yes	yes	yes	yes	yes	238	60
2012-2014	high	yes	yes	yes	yes	yes	yes	yes	204	66
2009-2014	low	no	no	no	no	no	no	no	448	57.5



The cost of Risk

Distribution of the change in the cost of yield risk (bu/ac) between high- and low-input cropping systems in each state and probability (P) as a percentage that the cost difference > 0. Within each state, the red dashed line shows the zero-cost difference, and the black line indicates the mean cost difference (Yd).

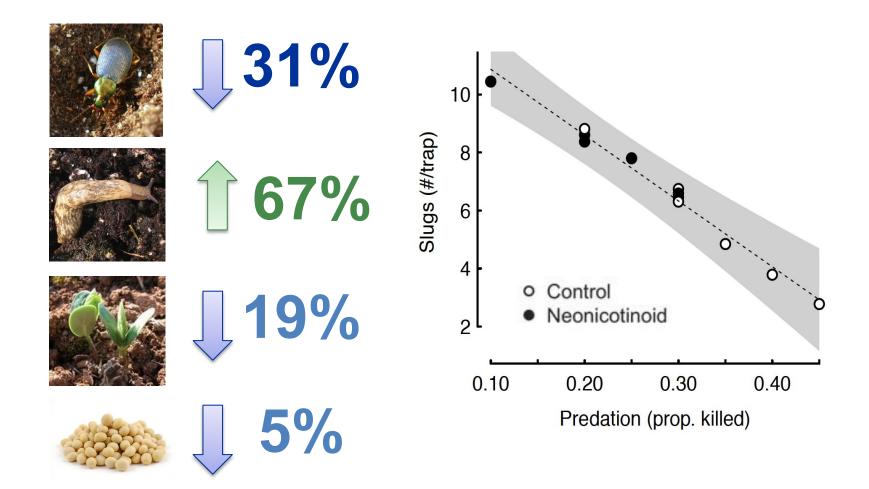


The cost of Risk

Mean cost of yield risk (bu/ac) difference between high and low input cropping systems in each state for moderate level of risk-neutral farmer (r=3). The errors show the 95% confidence intervals.

Cover crops, climate and slugs oh my!

In this study, we collected soil samples from 21 long-term soybean cropping system trials across the United States (US) to assess the impact of management practices on soil health indicators. Highlights from the trials found:



Overall results suggest that cover crops can play a crucial role in building soil health in soybean-based cropping systems.

Field data: Neonic seed treatments disrupted biological control

Douglas, Rohr & Tooker 2015 Journal of Applied Ecology

Ξ

B

thesoyreport.blogspot.com

@badgerbean

www.coolbean.info

WWW.COOLBEAN.INFO

University of Wisconsin-Madison | UW Extension

COOLBEAN